

Mountain Micrometeorology Modeling with WRF

Alex Anderson-Connolly Fotini Chow

Motivation

• Air quality forecast

• Wind farm siting

• Weather prediction e.g. cold pools

Photo Credit: Spencer Garn, ksl.com

Modeling goals

- perform large-eddy permitting simulations over Granite Peak
 - stable flows
 - mesoscale/microscale interactions
- investigate limitations of WRF
 - o 10 m resolution? 100 m?
 - 30 deg slope? 45 deg?
- improve fidelity of LES over complex terrain

Overview

- Modeling challenges
 - Terra incognita
 - High resolution inputs
 - Slope aspect ratio
- Comparisons to observations
- Future work

Grid nesting across the gray zone

• Nesting past *terra* "terra incognita" incognita $\phi(\kappa)$ LES mesoscale limit. limit • 9 km -> 3 km -> 1 km -> 333 m -> 111 m $1/\Delta_{mg'}$ 111

from Wyngaard (2004)

Nest past gray zone

Goal:

on mesoscale domains, d01 and d02, parameterize all turbulence

Nest past gray zone

on LES domain, d03, resolve most turbulence

Goal:

Nest past gray zone

	d01 (6.3 km)	d02 (2.1 m)	d03 (100 m)
dx, dy	6.3 km	2.1 km	100 m
nx, ny	100 pts	100 pts	190 pts
dz (121 lvls)	~55 m to ~175 m		
dt	30 s	10 s	0.2 s
grid nest ratio	1	3	21
time step ratio	1	3	50

Large nest ratios bypass the terra incognita (gray zone)

Three Domains near Great Salt Lake

High res inputs: Topography

wrf out-of-the-box: 30s

HGT_M (meters MSL)

1⁄₃ arcsecond topography from National Elevation Dataset

HGT_M (meters MSL)

south_north

High res inputs: Topography

wrf out-of-the-box: 30s

max slope: 30 deg

1⁄₃ arcsecond topography from National Elevation Dataset

max slope: 45 deg

High res topographic input recreates complex terrain and leads to greater slopes

High res inputs: Land cover

wrf out-of-the-box: 30s NLCD Landuse

1s land use from NLCD Additional land use categories: Lava, Playa & White Sand

(as in Massey et al. 2014)

west_east

High res inputs: Soil type

Input	d01	d02	d03
	(6.3 km)	(2.1 km)	(100 m)
Торо	30 s	3 s	¹ ∕₃ s
	(~1 km)	(~100 m)	(~10 m)
Land	30 s	1 s	1 s
Cover	(~1 km)	(~30 m)	(30 m)
Soil type	30 s	30 s	30 s
	(~1 km)	(~1 km)	(~1 km)

soil type resolution is not increased, lava and white sand have been added SOILCTOP (category)

Example Soil type level

High res configurations

no topographic shading

Shortwave Radiation, 2012-10-14_14:40:00

SW with topographic shading

Shortwave Radiation, 2012-10-14_14:40:00

WRF can include effects of shadows, important in complex terrain

Shortwave Radiation, 2012-10-14_14:20:00

Shortwave Radiation [W]

XY contour of SW rad

during IOP 6, 02 MDT 10/14/'12 -02 MDT 10/15/'12

Terrain following coordinates

pressure based vertical coordinates

non-orthogonal grids lines

Slope aspect ratio

true derivative, d/dx, is bounded by single cell

metric term errors arise, but will stay bounded

Slope aspect ratio

Slope aspect ratio

slope < arctan(b * dz/dx)</pre>

b ~ 1 to 5

Mahrer 1984

Comparison with observations

Surface time series - east slope

2 meter Temp

PWD78 on East Slope

not resolving dips in T2 during Tell cold pool sloshing

not resolving quick drop in temperature as shadow front passes at ~1800 to 1900 MDT

Surface time series - valley

2 meter Temp

MS44 in valley to the east

no cold pool leads to large magnitudes of error

Problem: Mesoscale solution is recreated on LES domain

Possible Solutions:

- larger LES domain
- finer vertical resolution
- lateral boundary perturbations

Time [hrs since 00 MDT 10/14]

Small scale features

Are we resolving small scale motion on the LES domain?

At night time, lee waves are resolved

Small scale features

Are we resolving small scale motion on the LES domain?

During day time, thermal cells resolved

W-velocity [m s⁻¹]

XZ contour of vertical velocity

during IOP 6: 02 MDT 10/14/'12 -02 MDT 10/15/'12

Day: thermal plumes resolved

Night: lee waves resolved

W, k=004/119, 2012-10-14_08:00:00

east-west

XY contour of vertical velocity

during IOP 6: 02 MDT 10/14/'12 -02 MDT 10/15/'12

Day: thermal plumes resolved

Night: lee waves resolved

Conclusions

Successes:

WRF can run at 100 meters resolution over steep terrain,

- ~45 deg max slope, without blowing up if
 - i) vertical resolutions are sufficiently coarse and
 - ii) time steps are sufficiently small

Grey zone issues can be avoided through a nested approach

Take Home Message:

WRF-LES can resolve the small scale features of mountain micrometeorology

Future work

Ongoing challenge: better agreement with surface observations, sloshing, temperature biases.

May need to develop turbulence on LES domain with

- Larger domain
- Improved vertical resolution
- Lateral boundary perturbations

while considering

- Computational costs
- Slope aspect ratios

Take Home Message:

Difficulty resolving near surface variables, for a practical computational cost and without violating slope aspect stability limits, makes a good case for IBM-WRF.

Acknowledgments

ONR MURI MATERHORN

Thanks to Massey et al. for land cover data!

PBL closures

For complex terrain, MYJ (local scheme) outperforms YSU (non-local)

LES closures

2 meter Temp

Time [hrs since 00 MDT 10/14]

20

24

PBL vs LES

PBL domains' solutions for surface variables are recreated on LES domain

Wind Direction

